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An or thot ropic ,  small s t r a i n  v i scop la s t i c i ty  theory based on 
overs t ress  i s  presented. In  each preferred d i r ec t ion  the stress i s  
composed of time (rate)-independent (or  p l a s t i c )  and viscous (or  r a t e -  
dependent) contr ibut ions.  Tension-compression asymmetry can depend on 
d i r e c t i o n  and is included i n  the model. Upon a proper choice of a 
material constant  one preferred d i r ec t ion  can exh ib i t  l i n e a r  e l a s t i c  
response while  the o ther  two deform i n  a v i scop la s t i c  manner. 

INTRODUCTION 

Recently d i r e c t i o n a l l y  s o l i d i f i e d  a l loys ,  n icke l  base s ing le  
c r y s t a l  superal loys and o ther  an iso t ropic  me ta l l i c  composites have 
a t t r a c t e d  i n t e r e s t  f o r  use i n  gas turbines  and o ther  high temperature 
appl ica t ions .  The usual high temperature phenomena such as creep, 
re laxa t ion ,  ra te  s e n s i t i v i t y ,  recovery and aging found i n  near ly  i so-  
t rop ic  materials a r e  a l s o  present  i n  these materials. 
p rope r t i e s  a r e  now dependent on d i r ec t ion .  

However, a l l  these 

For the  pred ic t ion  of l i f e  of components made of an iso t ropic  
ma te r i a l s  and operat ing a t  elevated temperature the deformation behavior 
must be  known i n  addi t ion  t o  an iso t ropic  damage accumulation l a w s .  
i s  the purpose of t h i s  paper t o  introduce an or thot ropic  version of the 
v i s c o p l a s t i c i t y  theory based on overs t ress  (VBO), ( the  t ransversely 
i s o t r o p i c  case  can be  recovered as a spec ia l i za t ion ) .  The uniax ia l  and 
the  i so t rop ic  vers ion of VBO were introduced previously [l, 21. 
i s  of the uni f ied  type ( p l a s t i c i t y  and creep are not represented by 
sepa ra t e  c o n s t i t u t i v e  equations) and does not  employ the concepts of a 
y i e l d  su r face  and associated loading and unloading conditions.  In  the 
present  form of the theory aging and recovery are not  accounted f o r  but  
can be added i f  need arises. 

I t  

The theory 
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The o r t h o t r o p i c  fonnulat ion was der ived wi th  t h e  h e l p  of tensor  
func t ion  r r p r e r e n t a t i o n  theorans [31 and the u n i a x i a l  vers ion  of the  
VBO. 
n e c e i r i t y  of modeling key m a t e r i a l  phenomena. 
approach is not  r e s t r i c t e d  t o  the  o r t h o t r o p i c  case 8nd can be appl ied 
t o  o t h e r  m a t e r i a l  symmetries as well ,  

S impl ic i ty  w.8 a goal ar long as i t  wa6 c o n r i s t e n t  with t h e  
The t e n r o r  func t ion  

UNIAXIAL PROPERTIES OF VBO INCLUDING ASYMPTOTIC SOLUTIONS 

I n  the  formulat ion of VBO s p e c i a l  cons idera t ion  was given t o  the  
modeling of e l a s t i c  regions i n  a d d i t i o n  t o  t h e  u s u a l  time-dependent 
p r o p e r t i e s  [11. A u s e f u l  property Of the  system of  nonl inear  d i f f e r -  
e n t i a l  equat ions i s  the  ex is tence  Of asymptotic s o l u t i o n s  which a r e  
a l g e b r a i c  expressions.  They apply mathematically a t  i n f i n i t e  time i n  
a cons tan t  s t r a i n  ra te  o r  creep,  o r  r e l a x a t i o n  tes t .  
our experience t h a t  t h e s e  asymptotic s o l u t i o n s  can be used wi th  conf i -  
dence when p l a s t i c  flow is f u l l y  developed i n  a t e n s i l e  test  [1,4]. 

However, i t  i s  

A schematic of t h e  p r o p e r t i e s  of t h e  model i n  a t e n s i l e  t e s t  i s  
given i n  Fig.1. The evolu t ion  of t h e  stress CY, t h e  equi l ibr ium stress g 
(which i s  reached when a l l  r a t e s  approach z e r o )  and of the  q u a n t i t y  
f = E t €  are shown. 
t h e  p l a s t i c  reg ion  even when t h e  asymptotic s o l u t i o n s  are a t t a i n e d .  The 
asymptotic values  are indica ted  by { ] i n  Fig.1.  
s tress c o n s i s t s  of  { o -  g], t h e  time-independent o r  viscous c o n t r i b u t i o n ,  
o f  { g -  f )  which r e p r e s e n t s  the  time-independent o r  p l a s t i c  p a r t  and of 
t h e  p o r t i o n  which grows l i n e a r l y  w i t h  E; i t  is termed t h e  hardening 
c o n t r i b u t i o n .  
see [1,2] f o r  f u r t h e r  d e t a i l s .  
almost co inc ide  and n e a r l y  e l a s t i c  behavior  i s  represented .  

It i s  introduced f o r  modeling a nonzero s l o p e  E i n  
t 

It i s  seen t h a t  t h e  

It i s  z e r o  when t h e  tangent  modulus Et  is set  t o  zero,  
I n  a neighborhood of the  o r i g i n ,  Q and g 

In t h e  formulat ion of t h e  a n i s o t r o p i c  v e r s i o n  of VBO t h e  e l a s t i c  
p r o p e r t i e s  can depend on d i r e c t i o n .  I n  a d d i t i o n ,  i t  was f e l t  necessary 
t o  have s e p a r a t e  d i r e c t i o n a l  p r o p e r t i e s  f o r  t h e  viscous,  t h e  p l a s t i c  and 
the  hardening c o n t r i b u t i o n s  t o  t h e  stress. 
t h a t  t h e  theory does n o t  s e p a r a t e l y  formulate  p l a s t i c  and time-dependent 
c o n s t i t u t i v e  equat ions .  Hatever, t h e  asymptotic s o l u t i o n s  of  t h e  theory 
permit  such a d i s t i n c t i o n . )  The reason f o r  t h i s  d i s t i n c t i o n  l i es  i n  t h e  
r e a l i z a t i o n  t h a t  d i f f e r e n t  m a t e r i a l  c o n s t i t u e n t s  may be used i n  d i f f e r e n t  
d i r e c t i o n s  (example; d i r e c t i o n a l l y  s o l i d i f i e d  a l l o y s )  o r  t h a t  t h e  micro- 
s t r u c t u r e  may develop an  o r i e n t a t i o n  dependence. Moreover, f i b e r s  with 
predominantly e l a s t i c  behavior  may run i n  one d i r e c t i o n  and t h e  visco-  
p l a s t i c  mat r ix  may c o n t r o l  the  behavior  i n  o t h e r  d i r e c t i o n s .  

(It i s  important t o  n o t e  

AN ORTHOTROPIC VISCOPLASTICITY THEORY BASED ON OVERSTRESS 

I n  [ a ]  a f u l l y  i n v a r i a n t  theory i s  developed with a r b i t r a r y  
o r i e n t a t i o n  of  t h e  p r i n c i p a l  m a t e r i a l  axes r e l a t i v e  t o  t h e  coord ina te  
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system used i n  the representat ion of the tensors.  
t h a t  the  coordinate system i n  which the tensor components are given 
coincides with the  mater ia l  axes. Vector notat ion i s  used with 

Present ly  we assume 

and with a s imi l a r  convention fo r  the mall s t r a i n  e except t h a t  
engineering shear  s t r a i n s  a r e  used fo r  the vector  components c4  
through e6. 

The evolution of the  stress i s  governed by 

-1 where C i s  the matr ix  of e l a s t i c  constants.  
given Ey, s ee  [SI 

The inverse of C,, C, i s  

0 0 

0 0 

h 

0 

i n  The i n e l a s t i c  s t r a i n  ra te  d& / d t  i s  represented by 

where the pos i t i ve  function R[r1 i s  a repos i tory  of viscous e f f e c t s  
(K[r]  = l/(Ek[r]) where k[rl i s  the  v iscos i ty  function used i n  El]). 
The dimensionless components of the matr ix  R, a r e  c a l l e d  the  i n e l a s t i c  
l a t e r a l  r a t i o s .  The invar ian t  r is  defined as 

a 0 0 01, where the dimensionless components ai  a r e  T 
3 

zero when the v scous e f f e c t s  a r e  the  same i n  tension and compression. 
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V, i s  the matrix of t he  viscous la te ra l  r a t i o s .  The overs t ress  i s  
x, - - a,- E. The equilibrium stress evolves according t o  

(6) 
2 i n  

dg/dt = Q[I ' Ic[rI(d~/dt  - 0 de cc / d t )  
CI. 

This growth l a w  i s  very similar t o  the one used i n  [l, 21. 
8 is  given by 

The invar ian t  

0 = ((gTS S g)'l2 + bTS &)/A 
cc --- N c c  

with bT = [b b b 0 0 01. The dimensionless components b are zero 

when the p l a s t i c  e f f e c t s  i n  tension and compression a r e  equal,  
ana lys i s  of the asymptotic behavior of the uniax ia l  equivalent of  (6)  
i n  [l] shows t h a t  [g - f ]  i n  Fig.1 equals the constant  A which has the  
dimension of stress. 
the p l a s t i c  la teral  r a t i o s .  
shape ra t ios  and are i n i t i a l l y  equal t o  the components of E C 1- 
the  e l a s t i c  r a t i o s .  
dimension of  stress with $LO1 s l i g h t l y  less than the elastic modulus E 

see [l]. 
t h a t  f i n  Fig.1 i s  zero and a l l  the s t r e s s - s t r a i n  curves become u l t i -  
mately horizontal .  

cc 1 2 3  i 
The 

The dimensionless Components of the matrix 2 a r e  
The dimensionless components of B are ca l l ed  

The posi t ive,  decreasing shape function $ [ r ]  has the 

a , ca l l ed  

1' 
w a s  set  equal t o  zero so  For s impl ic i ty  the  tangent modulus E t 

Due t o  orthotropy, the matrices 3 3 S, and B, all have the  same 
-1 representa t ion  as the matrix C, 

pendent components. The components of each matr ix  can be se lec ted  
independently t o  model the observed d i r e c t i o n a l  dependence of the  various 
material proper t ies .  

i n  (3) and have therefore  nine inde- 

The i n i t i a l  e l a s t i c  proper t ies  a r e  cont ro l led  by C, as i n  the case 
of  e l a s t i c i t y .  
by R, and x. The evolut ion of the i n e l a s t i c  s t r a i n  r a t e s  are influenced 

They a l s o  cont r ibu te  t o  the asymptotic overs t ress  { E ) ,  see 
Fig. 1, 

stress 

and i t  

given by 

The asymptotic time-independent or  p l a s t i c  cont r ibu t ion  t o  the 
is cont ro l led  by the invar ian t  0 through 

{ e l 2  = 1 (9 1 

is  seen from (7) t h a t  the  d i r e c t i o n a l  proper t ies  are cont ro l led  
by E alone. 
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Detailed ana lys i s  i n  [a] shows t h a t  the matrix B, together with 
the shape function $[r] cont ro ls  the "knee" of the s t r e s s - s t r a i n  curves 
i n  d i f f e r e n t  d i r ec t ions .  

A simplif ied version which has been shown t o  be useful  [61 is 
-1 t o  s e t  R, = B, = E C-' and t o  choose 5 and independently. This choice 1- 

permits the  independent ad jusment  of the viscous and p l a s t i c  asymptotic 
cont r ibu t ions  t o  the  stress. Within t h i s  choice i t  is possible  t o  model 

i) purely e l a s t i c  behavior under a hydros ta t ic  s t a t e  of  
stress, 
l i n e a r  e l a s t i c  behavior i n  any of the preferred 
d i r ec t ions  while the other  d i r ec t ions  behave i n  a 
v i scop la s t i c  manner. 

i i )  

This l a s t  property is very usefu l  f o r  modeling f i b e r  re inforced mater ia l s .  
It should a l s o  be  s t ressed  t h a t  the theory permits the modeling of tension/ 
compressi'on asyumetry which depends 011 d i rec t ion  through the dimensionless 
vec tors  and b,. 

The c a p a b i l i t i e s  of the theory a r e  demonstrated i n  Figs.2 through 4. 
They depic t  t he  response of a t ransversely i so t rop ic  material t o  a con- 
s t a n t  s t r a i n  ra te  t e n s i l e  tes t  i n  the 1- and 3-direct ions,  respect ively.  

I n  Fig.2 R = S = V = B - l  = E C - l  and the evolution of the s t r e s s  and of 

t he  equilibrium s t r e s s  are governed by the values of C, 
t h a t  the  e l a s t i c  modulus, the stress and the overs t ress  i n  the  3-direct ion 
are always l a r g e r  than i n  the  1-direct ion.  are s e t  equal 

t o  zero (a l l  o ther  quan t i t i e s  are the same as i n  Ng .2 )  the response i n  
the  3-direct ion is nearly l i n e a r  e l a s t i c  whereas t h a t  i n  the 1-direct ion 
is unaffected,  see Fig.3. 
50/35 used in Fig.2; a l l  o ther  quan t i t i e s  are unchanged from Fig.2) the  
carves of Fig.4 r e s u l t .  This choice w i l l  increase  
time independent p a r t  of the stress, but  w i l l  leave the  overs t ress ,  the 
viscous cont r ibu t ion  t o  t h e  stress, unchanged. 
constants  the equ i l ib r iun  so lu t ion  has not been a t t a ined  within the 
limits of the  graph i n  Fig.4. 

-1 - C C h +  1- . It  i s  seen 

When S33 and V 33 

When S33 is set equal  t o  0 . 5  ( instead of 

the p l a s t i c  o r  

h e  t o  the  na ture  of the 

The above represents  only p a r t  of the c a p a b i l i t i e s  of the theory 
developed i n  161. It includes an incompressible i n e l a s t i c ,  devia tor ic  
formulation. Further developments are given i n  [71. The theory needs 
t o  be appl ied t o  real  an iso t ropic  materials so t h a t  the  ma te r i a l  func- 
t i ons  and constants  can be i d e n t i f i e d  and the  usefulness  of the theory 
be demonstrated. 
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Figure 2 .  hmiufrl t e n s i l e  tests in the  1- and 3-direct ionr ,  Figure 1. S c h e m t i c  shoving t h e  viscous (0-d. 
p l a s t i c  (8-f)  asymptot ic  c o n t r i b u t i o n s  t o  t h e  
stress. The hardening cont r ibu t ion  f - E t E  is respec t ive ly .  S t r a i n  r a t e  is IO-' E-'. g-  2 - - ~ - 1 -  ~ ~ s - 1 .  

also o h m .  In t h i s  paper Et - 0. 

STRAIN X 

Figure 3. Sune as Fig.  2 except  t h a t  SI, -V3* -0. N u r l y  
linear e l a s t i c  response fn t h e  3 - d i r e c t i o n  r e s u l t s .  me 
response in the  l - d i r e c t i o n  is unal te red .  

STiUpr x 

Figure 4. Same as Fig. 2 u c e p t  t h a t  S3, - 0.5 instead of 
50133 used in Fig.  2. 

The response in t h e  l - d i r e c t i m  i r  unal te red .  

Am a consequence { g 3 3 )  is increased 
v i t h o u t  changing (a33*~1). 
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